

II Semester B.C.A. Examination, September 2020 (CBCS) (F+R) (2014-15 and Onwards) COMPUTER SCIENCE BCA 203 : Data Structures

Time: 3 Hours

Max. Marks: 70

Instruction: Answer all Sections.

SECTION - A

Answer any ten questions. Each question carries two marks.

 $(10 \times 2 = 20)$

- 1. What are non-linear data structures? List any two non-linear data structures.
- 2. State with example any two word processing operations.
- 3. State any four mathematical Pubctions.
- 4. Compare array v/s linked list method of storage.
- 5. What is a sparse matrix? Illustrate with an example.
- 6. State the different types of linked lists.
- 7. State any two applications of stack.
- 8. Convert the following expression in postfix format : 8 * (3 + 5) / 4 2.
- 9. What are the typical operations performed on non-primitive data structures?
- 10. Compare linear queue v/s circular queue.
- 11. What is directed graph? Give an example.
- 12. What is a binary search tree?

SECTION - B

Answer any five questions. Each question carries ten marks.

 $(5 \times 10 = 50)$

13. a) Explain the different asymptotic notations.

5

b) What is an ADT? Explain its relevance in the study of data structures.

5

SE	_ 3		
14.	a)	Explain with an example the working of any one string matching algorithm.	5
	b)	Write the 'C' functions for the following string operations: i) Length of a string. ii) String concatenation.	5
15.	a)	Write a 'C' program for sorting an array using Bubble sort technique.	5
	b)	Write a note on dynamic memory allocation and garbage collection.	5
16.	a)	What is a linked list? Describe the node of a single linked list and the linked list operations.	5
	b)	Write algorithms for the following single linked list operations: i) Insert a node at the beginning of a linked list. ii) Searching a value in a linked list.	5
17.	a)	Write an algorithm for converting an infix expression into postfix expression.	4
	b)	Discuss the different types of queries.	6
18.	·	What is a binary tree? Explain the following: i) Full/complete binary tree. ii) Strictly binary tree. iii) Almost complete binary tree.	5
		Draw a BST for the following and perform pre order, in order and post order traversals.	5
		7, 4, 9, 11, 12, 8, 3, 1, 2	
19. _;	a)	What is recursion? Write a recursive function for the tower of Hanoi problem.	5
	b)	Write a C program for linear search.	5
20.		Discuss with examples the methods of graph representation. Explain the DFS method of graph traversal.	5 5

¢,